Automatic Non-Contact Extraction and Independent Manipulation of Magnetic Particles Using Electromagnetic Needle

Jean-Antoine Seon, Zoran Cenev, Quan Zhou

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
323 Downloads (Pure)


Selective and independent manipulation of microparticles is important for a wide range of applications. Compared to other physical principles, magnetic field is promising due to its ability to penetrate most materials and affects only magnetic objects. However, in most non-contact magnetic manipulation systems, all particles in the workspace are moved simultaneously. This paper reports an automatic single-source non-contact magnetic manipulation technique that can selectively extract individual magnetic particles from a population of similar particles and then independently manipulate the extracted particles. We use an electromagnetic needle to create a highly localized magnetic field to achieve the local addressability. The motion of single particles is controlled by adjusting the position of the electromagnetic needle using visual servoing, where two control laws, velocity and position control, have been developed. Experimental results show that a predefined velocity vector can be followed accurately with a directional error of 8.5◦ and a norm error of 5 µm/s. Similarly, a predefined path can be followed with a position error of 0.5 µm. The capabilities of the proposed method has been demonstrated in four cases: selective extraction of a single particle from a population, separation of two magnetic particles with 11 µm initial gap, independent manipulation of four particles and targeted delivery of two particles onto two separate cells.
Original languageEnglish
Article number8936984
Pages (from-to)931-941
Number of pages11
Issue number2
Early online date19 Dec 2019
Publication statusPublished - Apr 2020
MoE publication typeA1 Journal article-refereed


  • Magnetic devices
  • Magnetic forces
  • Automation
  • Motion control


Dive into the research topics of 'Automatic Non-Contact Extraction and Independent Manipulation of Magnetic Particles Using Electromagnetic Needle'. Together they form a unique fingerprint.

Cite this