Abstract
Smart grid is a cyber-physical system with a high level of complexity due to its decentralized infrastructure. IEC 61850 and IEC 61499 are two industrial standards that can address the challenges introduced by the smart grid on the substation automation level. Development of smart grid automation software is a very time-consuming process due to the need to address many requirements and a high degree of customization in every new substation, which limits the adoption of such smart grid technologies in digital substations. This article aims at addressing this limitation by applying a semiformal boilerplates (BPs) model of functional requirements originally presented in informal natural language. The BPs are then modeled formally in an ontology for model-driven engineering (MDE) model transformation. The contribution of this article is the development of the semiformal and formal BP representation in the form of ontology to formulate smart grid requirements and demonstrating how functional requirements can be translated to IEC 61499 control codes using MDE to autogenerate an IEC 61499 protection and control system with structure and control flow. The MDE framework augmented with the requirement models is illustrated in a case study from the International Council on Large Electric Systems representing different stages of modeling in the proposed framework.
Original language | English |
---|---|
Article number | 8771136 |
Pages (from-to) | 403-413 |
Number of pages | 11 |
Journal | IEEE Transactions on Industrial Informatics |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2020 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Boilerplates (BPs)
- Cyber-physical system (CPS)
- IEC 61499
- IEC 61850
- Model-driven engineering (MDE)
- Ontology
- Requirement engineering