Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology

Emily G. Facchine, Long Bai, Orlando J. Rojas*, Saad A. Khan

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Hypothesis: Nanocellulose and nanochitin are both biobased materials with complementary structures and properties. Both exhibit pH-dependent surface charges which are opposite in sign. Hence, it should be possible to manipulate them to form complexed structures via ionic bond formation at prescribed pH conditions. Experiment: Nanocellulose and nanochitin were mixed after exposure to acidic or neutral conditions to influence their ionization state. The heat of interaction during the introduction of nanochitin to nanocellulose was monitored via isothermal titration calorimetry. The strength and gel properties of the resulting structures were characterized via rheological measurement. Findings: The resultant gel properties in the designed hybrid systems were found to depend directly on the charge state of the starting materials, which was dictated by pH adjustment. Different interparticle interactions including ionic attraction, hydrophobic associations, and physical entanglement were identified in the systems and the influence of each was elucidated for different conditions of pH, concentration, and ratio of nanochitin to nanocellulose. Hydrophobic associations between neutralized nanochitin particles were found to contribute strongly to increased elastic modulus values. Ionic complex formation was found to provide enhanced stability under broader pH conditions, while physical entanglement of cellulose nanofibers was a substantial thickening mechanism in all systems.

Original languageEnglish
Pages (from-to)232-241
Number of pages10
JournalJournal of Colloid and Interface Science
Volume588
DOIs
Publication statusPublished - 15 Apr 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • Ionic complex
  • Isothermal titration calorimetry
  • Nanocellulose
  • Nanochitin
  • Rheology

Fingerprint Dive into the research topics of 'Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology'. Together they form a unique fingerprint.

Cite this