Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production

Irene Coronado*, Martina Stekrova, Lourdes García Moreno, Matti Reinikainen, Pekka Simell, Reetta Karinen, Juha Lehtonen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

44 Citations (Scopus)

Abstract

Water fractions derived from biofuel production contain oxygenated hydrocarbons that can be converted by aqueous-phase reforming (APR) into hydrogen. As a result, the product efficiency of biorefineries may improve. However, the hydrothermal and high pressure operating conditions of APR limit the reaction kinetics, thermodynamics and catalyst stability. To overcome these limitations, an active and durable catalyst should be developed to selectively convert oxygenated hydrocarbons into hydrogen. For this study, methanol was selected as a model compound. Nickel-based catalysts with dopants such as copper and cerium and different supports were tested for the APR of methanol. The results revealed enhanced performance of doped catalysts in comparison to monometallic materials, and the effect of supports improved in the order α-Al2O3 < β-SiC < ZrO2 < γ-Al2O3. Accordingly, NiCe/γ-Al2O3 exhibited the highest values of methanol conversion and hydrogen yield. These results satisfied the target of this study to develop an active and hydrogen-selective catalyst and proved the suitability of cerium-doped nickel on alumina to convert methanol into hydrogen.

Original languageEnglish
Pages (from-to)29-37
Number of pages9
JournalBiomass and Bioenergy
Volume106
DOIs
Publication statusPublished - 1 Nov 2017
MoE publication typeA1 Journal article-refereed

Keywords

  • Aqueous-phase reforming
  • Biorefinery
  • Hydrogen
  • Methanol
  • Nickel-based catalyst

Fingerprint

Dive into the research topics of 'Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production'. Together they form a unique fingerprint.

Cite this