Approximation of PDE eigenvalue problems involving parameter dependent matrices

Daniele Boffi, Francesca Gardini*, Lucia Gastaldi

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

83 Downloads (Pure)

Abstract

We discuss the solution of eigenvalue problems associated with partial differential equations that can be written in the generalized form Ax= λBx, where the matrices A and/or B may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilized formulations are used for the numerical approximation of partial differential equations. With the help of classical numerical examples we show that the presence of one (or both) parameters can produce unexpected results.

Original languageEnglish
Article number41
Number of pages21
JournalCALCOLO
Volume57
Issue number4
DOIs
Publication statusPublished - Dec 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • Eigenvalue problem
  • Parameter dependent matrices
  • Partial differential equations
  • Polygonal meshes
  • Virtual element method

Fingerprint Dive into the research topics of 'Approximation of PDE eigenvalue problems involving parameter dependent matrices'. Together they form a unique fingerprint.

Cite this