An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping

Chuang Qian, Hui Liu, Jian Tang*, Yuwei Chen, Harri Kaartinen, Antero Kukko, Lingli Zhu, Xinlian Liang, Liang Chen, Juha Hyyppä

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

60 Citations (Scopus)

Abstract

Forest mapping, one of the main components of performing a forest inventory, is an important driving force in the development of laser scanning. Mobile laser scanning (MLS), in which laser scanners are installed on moving platforms, has been studied as a convenient measurement method for forest mapping in the past several years. Positioning and attitude accuracies are important for forest mapping using MLS systems. Inertial Navigation Systems (INSs) and Global Navigation Satellite Systems (GNSSs) are typical and popular positioning and attitude sensors used in MLS systems. In forest environments, because of the loss of signal due to occlusion and severe multipath effects, the positioning accuracy of GNSS is severely degraded, and even that of GNSS/INS decreases considerably. Light Detection and Ranging (LiDAR)-based Simultaneous Localization and Mapping (SLAM) can achieve higher positioning accuracy in environments containing many features and is commonly implemented in GNSS-denied indoor environments. Forests are different from an indoor environment in that the GNSS signal is available to some extent in a forest. Although the positioning accuracy of GNSS/INS is reduced, estimates of heading angle and velocity can maintain high accurate even with fewer satellites. GNSS/INS and the LiDAR-based SLAM technique can be effectively integrated to form a sustainable, highly accurate positioning and mapping solution for use in forests without additional hardware costs. In this study, information such as heading angles and velocities extracted from a GNSS/INS is utilized to improve the positioning accuracy of the SLAM solution, and two information-aided SLAM methods are proposed. First, a heading angle-aided SLAM (H-aided SLAM) method is proposed that supplies the heading angle from GNSS/INS to SLAM. Field test results show that the horizontal positioning accuracy of an entire trajectory of 800 m is 0.13 m and is significantly improved (by 70%) compared to that of a traditional GNSS/INS; second, a more complex information added SLAM solution that utilizes both heading angle and velocity information simultaneously (HV-aided SLAM) is investigated. Experimental results show that the horizontal positioning accuracy can reach a level of six centimetres with the HV - aided SLAM, which is a significant improvement (by 86%). Thus, a more accurate forest map is obtained by the proposed integrated method.

Original languageEnglish
Article number3
JournalRemote Sensing
Volume9
Issue number1
DOIs
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed

Keywords

  • Forest mapping
  • GNSS/INS
  • Integration
  • LIDAR
  • MLS
  • SLAM

Fingerprint

Dive into the research topics of 'An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping'. Together they form a unique fingerprint.

Cite this