An extended ice failure model to improve the fidelity of icebreaking pattern in numerical simulation of ship performance in level ice

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

  • Dalhousie University

Abstract

The modelling of the ice failure including icebreaking pattern and ice bearing capacity is an important issue in numerical simulations of ships going through level ice, in order to predict ship performance and ice loads. Previous studies model the shape of ice cusps assuming a simplified geometry, e.g. circular or triangular. According to the observations during full-scale ship trials, the geometry of the ice cusps is more elliptical rather than circular, with larger breaking length at the edges than that at the center. In this paper, a new ice failure model is developed which results in more realistic cusp shapes compared to existing approaches. The model is based on an analytically-derived differential equation, which is solved numerically via the Finite Difference Method (FDM). The predictions of ice cusps geometry are validated against full-scale measurement of ice cusps, obtained with an on-board stereo camera system. Satisfying agreement is shown. The ice failure model is incorporated into a numerical model for the prediction of ship performance in level ice. The predictions are compared with ship speed record obtained from a full-scale trial. It is shown that the model gives reasonable results for ship speed.

Details

Original languageEnglish
Pages (from-to)169-183
Number of pages15
JournalOcean Engineering
Volume176
Publication statusPublished - 15 Mar 2019
MoE publication typeA1 Journal article-refereed

    Research areas

  • Icebreaking pattern, Level ice, Numerical simulation, Ship performance in ice

Download statistics

No data available

ID: 32386068