An a posteriori estimator of eigenvalue/eigenvector error for penalty-type discontinuous Galerkin methods

Stefano Giani, Luka Grubisic, Harri Hakula, Jeffrey S. Ovall

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We provide an abstract framework for analyzing discretization error for eigenvalue problems discretized by discontinuous Galerkin methods such as the local discontinuous Galerkin method and symmetric interior penalty discontinuous Galerkin method. The analysis applies to clusters of eigenvalues that may include degenerate eigenvalues. We use asymptotic perturbation theory for linear operators to analyze the dependence of eigenvalues and eigenspaces on the penalty parameter. We first formulate the DG method in the framework of quadratic forms and construct a companion infinite dimensional eigenvalue problem. With the use of the companion problem, the eigenvalue/vector error is estimated as a sum of two components. The first component can be viewed as a “non-conformity” error that we argue can be neglected in practical estimates by properly choosing the penalty parameter. The second component is estimated a posteriori using auxiliary subspace techniques, and this constitutes the practical estimate.
Original languageEnglish
Pages (from-to)562-574
JournalApplied Mathematics and Computation
Volume319
DOIs
Publication statusPublished - Feb 2018
MoE publication typeA1 Journal article-refereed

Keywords

  • Eigenvalue problem
  • Finite element method
  • A posteriori error estimates
  • Discontinuous Galerkin method

Fingerprint Dive into the research topics of 'An a posteriori estimator of eigenvalue/eigenvector error for penalty-type discontinuous Galerkin methods'. Together they form a unique fingerprint.

Cite this