Amphiphilic oxygenated amorphous carbon-graphite buckypapers with gas sensitivity to polar and non-polar VOCs

Research output: Contribution to journalArticleScientificpeer-review


Research units


To precisely control the emission limit of volatile organic compounds (VOCs) even at trace amounts, reactive nanomaterials of, e.g., carbon are demanded. Particularly, considering the polar/non-polar nature of VOCs, amphiphilic carbon nanomaterials with a huge surface area could act as multipurpose VOC sensors. Here, for the first time, a buckypaper sensor composed of oxygenated amorphous carbon (a-COx)/graphite (G) nanofilaments is developed. Presence of the oxygen-containing groups rises the selectivity of the sensor to polar VOCs, such as ethanol and acetone through formation of hydrogen bonding, affecting the electron withdrawing ability of the group, the hole carrier density, and, thus, the resistivity. On the other hand, the electrostatic interactions between the toluene aromatic ring and the electrons of the graphitic crystals cause a formation of charge-transfer complexes, which could be the main mechanism of high responsiveness of the sensor towards non-polar toluene. To the best of my knowledge, an amphiphilic carbon nanofilamentous buckypaper has never been reported for gas sensing, and my device sensing polar/non-polar VOCs is state of the art for environmental control.


Original languageEnglish
Article number1343
Issue number9
Publication statusPublished - 1 Sep 2019
MoE publication typeA1 Journal article-refereed

    Research areas

  • Amphiphilicity, Carbon nanofilament, Gas sensing, Volatile organic compounds (vocs)

ID: 38245247