Abstract

Many critical decisions, such as personalized medical diagnoses and product pricing, are made based on insights gained from designing, observing, and analyzing a series of experiments. This highlights the crucial role of experimental design, which goes beyond merely collecting information on system parameters as in traditional Bayesian experimental design (BED), but also plays a key part in facilitating downstream decision-making. Most recent BED methods use an amortized policy network to rapidly design experiments. However, the information gathered through these methods is suboptimal for down-the-line decision-making, as the experiments are not inherently designed with downstream objectives in mind. In this paper, we present an amortized decision-aware BED framework that prioritizes maximizing downstream decision utility. We introduce a novel architecture, the Transformer Neural Decision Process (TNDP), capable of instantly proposing the next experimental design, whilst inferring the downstream decision, thus effectively amortizing both tasks within a unified workflow. We demonstrate the performance of our method across several tasks, showing that it can deliver informative designs and facilitate accurate decision-making.
Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 37 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
PublisherNeural Information Processing Systems Foundation
Number of pages19
Publication statusAccepted/In press - 2024
MoE publication typeA4 Conference publication
EventConference on Neural Information Processing Systems - Vancouver, Canada, Vancouver , Canada
Duration: 10 Dec 202415 Dec 2024
Conference number: 38
https://neurips.cc/Conferences/2024

Conference

ConferenceConference on Neural Information Processing Systems
Abbreviated titleNeurIPS
Country/TerritoryCanada
CityVancouver
Period10/12/202415/12/2024
Internet address

Fingerprint

Dive into the research topics of 'Amortized Bayesian Experimental Design for Decision-Making'. Together they form a unique fingerprint.

Cite this