Ambient-Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices

Research output: Contribution to journalArticle


Research units


The application potential of cellulose nanofibril (CNF) aerogels has been hindered by the slow and costly freeze- or supercritical drying methods. Here, CNF aerogel membranes with attractive mechanical, optical, and gas transport properties are prepared in ambient conditions with a facile and scalable process. Aqueous CNF dispersions are vacuum-filtered and solvent exchanged to 2-propanol and further to octane, followed by ambient drying. The resulting CNF aerogel membranes are characterized by high transparency (>90% transmittance), stiffness (6 GPa Young's modulus, 10 GPa cm3 g−1 specific modulus), strength (97 MPa tensile strength, 161 MPa m3 kg−1 specific strength), mesoporosity (pore diameter 10–30 nm, 208 m2 g−1 specific surface area), and low density (≈0.6 g cm−3). They are gas permeable thus enabling collection of nanoparticles (for example, single-walled carbon nanotubes, SWNT) from aerosols under pressure gradients. The membranes with deposited SWNT can be further compacted to transparent, conductive, and flexible conducting films (90% specular transmittance at 550 nm and 300 Ω ◻−1 sheet resistance with AuCl3-salt doping). Overall, the developed aerogel membranes pave way toward use in gas filtration and transparent, flexible devices.


Original languageEnglish
Pages (from-to)6618-6625
JournalAdvanced Functional Materials
Issue number42
Publication statusPublished - 2015
MoE publication typeA1 Journal article-refereed

Download statistics

No data available

ID: 1476302