Abstract
The application potential of cellulose nanofibril (CNF) aerogels has been hindered by the slow and costly freeze- or supercritical drying methods. Here, CNF aerogel membranes with attractive mechanical, optical, and gas transport properties are prepared in ambient conditions with a facile and scalable process. Aqueous CNF dispersions are vacuum-filtered and solvent exchanged to 2-propanol and further to octane, followed by ambient drying. The resulting CNF aerogel membranes are characterized by high transparency (>90% transmittance), stiffness (6 GPa Young's modulus, 10 GPa cm3 g−1 specific modulus), strength (97 MPa tensile strength, 161 MPa m3 kg−1 specific strength), mesoporosity (pore diameter 10–30 nm, 208 m2 g−1 specific surface area), and low density (≈0.6 g cm−3). They are gas permeable thus enabling collection of nanoparticles (for example, single-walled carbon nanotubes, SWNT) from aerosols under pressure gradients. The membranes with deposited SWNT can be further compacted to transparent, conductive, and flexible conducting films (90% specular transmittance at 550 nm and 300 Ω ◻−1 sheet resistance with AuCl3-salt doping). Overall, the developed aerogel membranes pave way toward use in gas filtration and transparent, flexible devices.
Original language | English |
---|---|
Pages (from-to) | 6618-6625 |
Journal | Advanced Functional Materials |
Volume | 25 |
Issue number | 42 |
DOIs | |
Publication status | Published - 2015 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Ambient-Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices'. Together they form a unique fingerprint.Equipment
-
Bioeconomy Research Infrastructure
Seppälä, J. (Manager)
School of Chemical EngineeringFacility/equipment: Facility
-
-
OtaNano - Nanomicroscopy Center
Seitsonen, J. (Manager) & Rissanen, A. (Other)
OtaNanoFacility/equipment: Facility