Ambient-Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices

Matti S. Toivonen, Antti Kaskela, Orlando J. Rojas, Esko I. Kauppinen, Olli Ikkala

Research output: Contribution to journalArticleScientificpeer-review

85 Citations (Scopus)
674 Downloads (Pure)

Abstract

The application potential of cellulose nanofibril (CNF) aerogels has been hindered by the slow and costly freeze- or supercritical drying methods. Here, CNF aerogel membranes with attractive mechanical, optical, and gas transport properties are prepared in ambient conditions with a facile and scalable process. Aqueous CNF dispersions are vacuum-filtered and solvent exchanged to 2-propanol and further to octane, followed by ambient drying. The resulting CNF aerogel membranes are characterized by high transparency (>90% transmittance), stiffness (6 GPa Young's modulus, 10 GPa cm3 g−1 specific modulus), strength (97 MPa tensile strength, 161 MPa m3 kg−1 specific strength), mesoporosity (pore diameter 10–30 nm, 208 m2 g−1 specific surface area), and low density (≈0.6 g cm−3). They are gas permeable thus enabling collection of nanoparticles (for example, single-walled carbon nanotubes, SWNT) from aerosols under pressure gradients. The membranes with deposited SWNT can be further compacted to transparent, conductive, and flexible conducting films (90% specular transmittance at 550 nm and 300 Ω ◻−1 sheet resistance with AuCl3-salt doping). Overall, the developed aerogel membranes pave way toward use in gas filtration and transparent, flexible devices.
Original languageEnglish
Pages (from-to)6618-6625
JournalAdvanced Functional Materials
Volume25
Issue number42
DOIs
Publication statusPublished - 2015
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Ambient-Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices'. Together they form a unique fingerprint.

Cite this