Aluminium corrosion in power semiconductor devices

J. Leppänen*, J. Ingman, J. H. Peters, M. Hanf, Robert Ross, G. Koopmans, J. Jormanainen, A. Forsström, G. Ross, N. Kaminski, V. Vuorinen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)
462 Downloads (Pure)

Abstract

In this study, insulated gate bipolar transistor (IGBT) power modules were exposed to high voltage, high humidity, high temperature and reverse bias (HV-H3TRB) conditions until end-of-life (EoL). The limited lifetime of power semiconductor devices when used in demanding applications involving high relative humidity during operation is commonly reported to be associated with the design of the edge termination in power transistor or diode chips. A physics-of-failure (PoF) oriented methodology was adopted in failure analysis, including using lock-in thermography (LiT) for failure localisation and using an advanced microwave-induced plasma (MIP) decapsulation technique for the selective etching of the edge termination polyimide passivation film. A focused ion beam (FIB) was utilised to create a cross-section of the samples for both scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis. The evidence gathered using the physics-of-failure methodology were compared with the results from advanced statistical analysis of the failure distributions in Weibull plots, including comparison of α and β parameters. This analysis revealed correlation with the Weibull distributions and the results from the physics-of-failure. Aluminium corrosion products were systematically observed on guard rings (GR) and field plates (FP) showing that the migration of these corrosion products forming an electrical path between the guard rings that seems to be a major failure mechanism in high humidity environments when reverse bias voltage is applied.

Original languageEnglish
Article number114766
Number of pages9
JournalMicroelectronics Reliability
Volume137
DOIs
Publication statusPublished - Oct 2022
MoE publication typeA1 Journal article-refereed

Keywords

  • Aluminium corrosion
  • ECM
  • EoL
  • FIB
  • HV-HTRB
  • IGBT
  • LiT
  • MIP
  • PoF
  • Pourbaix diagram

Fingerprint

Dive into the research topics of 'Aluminium corrosion in power semiconductor devices'. Together they form a unique fingerprint.

Cite this