Projects per year
Abstract
Steiner triple systems form one of the most studied classes of combinatorial designs. Configurations, including subsystems, play a central role in the investigation of Steiner triple systems. With sporadic instances of small systems, ad hoc algorithms for counting or listing configurations are typically fast enough for practical needs, but with many systems or large systems, the relevance of computational complexity and algorithms of low complexity is highlighted. General theoretical results as well as specific practical algorithms for important configurations are presented.
Original language | English |
---|---|
Pages (from-to) | 527-546 |
Number of pages | 20 |
Journal | Journal of Combinatorial Designs |
Volume | 30 |
Issue number | 7 |
Early online date | 18 Apr 2022 |
DOIs | |
Publication status | Published - Jul 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- algorithm
- computational complexity
- configuration
- Steiner triple system
- subsystem
Fingerprint
Dive into the research topics of 'Algorithms and complexity for counting configurations in Steiner triple systems'. Together they form a unique fingerprint.Datasets
-
Dataset for Algorithms and Complexity for Counting Configurations in Steiner Triple Systems
Heinlein, D. (Creator) & Östergård, P. R. J. (Creator), Zenodo, 2021
Dataset
Projects
- 1 Finished
-
SubspaceCodes: Constructions and Classifications of Subspace Codes and Related Structures for Communication Networks
Heinlein, D. (Principal investigator)
01/09/2020 → 31/08/2023
Project: Academy of Finland: Other research funding