AI-based Network-aware Service Function Chain Migration in 5G and Beyond Networks

Rami Akrem Addad, Diego Leonel Cadette Dutra, Tarik Taleb, Hannu Flinck

Research output: Contribution to journalArticleScientificpeer-review

20 Downloads (Pure)

Abstract

While the 5G network technology is maturing and the number of commercial deployments is growing, the focus of the networking community is shifting to services and service delivery. 5G networks are designed to be a common platform for very distinct services with different characteristics. Network Slicing has been developed to offer service isolation between the different network offerings. Cloud-native services that are composed of a set of inter-dependent micro-services are assigned into their respective slices that usually span multiple service areas, network domains, and multiple data centers. Due to mobility events caused by moving end-users, slices with their assigned resources and services need to be re-scoped and re-provisioned. This leads to slice mobility whereby a slice moves between service areas and whereby the inter-dependent service and resources must be migrated to reduce system overhead and to ensure low-communication latency by following end-user mobility patterns. Recent advances in computational hardware, Artificial Intelligence, and Machine Learning have attracted interest within the communication community to study and experiment self-managed network slices. However, migrating a service instance of a slice remains an open and challenging process, given the needed co-ordination between inter-cloud resources, the dynamics, and constraints of inter-data center networks. For this purpose, we introduce a Deep Reinforcement Learning based agent that is using two different algorithms to optimize bandwidth allocations as well as to adjust the network usage to minimize slice migration overhead. We show that this approach results in significantly improved Quality of Experience. To validate our approach, we evaluate the agent under different configurations and in real-world settings and present the results.

Original languageEnglish
Number of pages13
JournalIEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT
DOIs
Publication statusE-pub ahead of print - Apr 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • 5G and beyond
  • 5G mobile communication
  • Artificial Intelligence
  • Bandwidth
  • Channel allocation
  • Cloud computing
  • Computer architecture
  • Deep Reinforcement Learning
  • Machine Learning
  • Management and Orchestration.
  • Multi-access Edge Computing
  • Resource management
  • Servers
  • Service Function Chain

Fingerprint

Dive into the research topics of 'AI-based Network-aware Service Function Chain Migration in 5G and Beyond Networks'. Together they form a unique fingerprint.

Cite this