Advanced DNA Nanopore Technologies

Boxuan Shen, Petteri Piskunen, Sami Nummelin, Qing Liu, Mauri A. Kostiainen, Veikko Linko*

*Corresponding author for this work

Research output: Contribution to journalReview Articlepeer-review

22 Citations (Scopus)
46 Downloads (Pure)

Abstract

Diverse nanopore-based technologies have substantially expanded the toolbox for label-free single-molecule sensing and sequencing applications. Biological protein pores, lithographically fabricated solid-state and graphene nanopores, and hybrid pores are in widespread use and have proven to be feasible devices for detecting amino acids, polynucleotides, and their specific conformations. However, despite the indisputable and remarkable advantages in technological exploration and commercialization of such equipment, the commonly used methods may lack modularity and specificity in characterization of particular phenomena or in development of nanopore-based devices. In this review, we discuss DNA nanopore techniques that harness the extreme addressability, precision, and modularity of DNA nanostructures that can be incorporated as customized gates or plugs into for example lipid membranes, solid-state pores, and nanocapillaries, thus forming advanced hybrid instruments. In addition to these, there exist a number of diverse DNA-assisted nanopore-based detection and analysis methods. Here, we introduce different types of DNA nanostructure-based pore designs and their intriguing properties as well as summarize the extensive collection of current and future technologies and applications that can be realized through combining DNA nanotechnology with common nanopore approaches.

Original languageEnglish
Pages (from-to)5606-5619
Number of pages14
JournalACS Applied Bio Materials
Volume3
Issue number9
DOIs
Publication statusPublished - 21 Sep 2020
MoE publication typeA2 Review article in a scientific journal

Keywords

  • DNA nanotechnology
  • DNA origami
  • nanopore
  • proteins
  • sensing
  • sequencing

Fingerprint

Dive into the research topics of 'Advanced DNA Nanopore Technologies'. Together they form a unique fingerprint.

Cite this