Abstract
The fast-evolving additive manufacturing (AM) technologies are considered vital for the next industrial revolution as it is capable for cost-effective production of highly customizable complex components. Its freeform design and fabrication flexibility also suggest the production of embedded electromechanical components or even electrical machines with enhanced performance. Presently, due to the maturity of single-material additive manufacturing methods, prototyping of 3D printed electrical machines has taken the path of printing and assembling of individual highperformance machine components. This paper describes the design, the printing, the post-processing, the assembly and the controller of a printed prototype 4/6 axial flux switched reluctance electrical machine. The machine components were fabricated with selective laser melting system from 3 % silicon steel in a total print time of 57 hours. Commercially available bearings and conventional copper windings were added as part of the assembly.
Original language | English |
---|---|
Title of host publication | Proceedings of 2021 28th International Workshop on Electric Drives |
Subtitle of host publication | Improving Reliability of Electric Drives, IWED 2021 |
Publisher | IEEE |
Number of pages | 4 |
ISBN (Electronic) | 978-1-6654-1456-2 |
ISBN (Print) | 978-1-6654-4760-7 |
DOIs | |
Publication status | Published - 22 Mar 2021 |
MoE publication type | A4 Conference publication |
Event | International Workshop on Electric Drives - Virtual, Online Duration: 27 Jan 2021 → 29 Jan 2021 Conference number: 28 |
Workshop
Workshop | International Workshop on Electric Drives |
---|---|
City | Virtual, Online |
Period | 27/01/2021 → 29/01/2021 |
Keywords
- electric machines
- manufacturing processes
- three-dimensional printing