A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems

Ehsan Naderi, Mahdi Pourakbari-Kasmaei, Fernando V. Cerna, Matti Lehtonen

Research output: Contribution to journalArticleScientificpeer-review


The optimal power flow (OPF) is a key tool in the planning and operation of power systems, and aims to optimize the operational costs involved in the production and transport of energy by adjusting control variables to meet operational, economic, and environmental constraints. To achieve this goal, a successful implementation of an expeditious and reliable optimization algorithm is crucial. To this end, this paper proposes and scrutinizes a novel fuzzy adaptive hybrid configuration oriented to a joint self-adaptive particle swarm optimization (SPSO) and differential evolution algorithms, namely FAHSPSO-DE, to address the multi-objective OPF (MOOPF) problem. For the sake of practicality, the objectives with innate differences such as total fuel cost, active power losses, and the emission are selected. Due to the practical limitations in real power systems, additional restrictions, including valve-point effect, multi-fuel characteristic, and prohibited operating zones, are also taken into account. In order to validate the performance of the proposed approach, ten various benchmark functions are examined, while three IEEE standard systems such as IEEE 30-, 57-, and 118-bus test systems are employed to demonstrate the performance and suitability of the proposed approach in solving the OPF problem expeditiously. Results have been compared with those in the literature and show the effectiveness of our proposal in handling different scales, multi-objective, and non-convex optimization problems.
Original languageEnglish
Article number106492
Number of pages17
JournalInternational Journal of Electrical Power and Energy Systems
Publication statusPublished - Feb 2021
MoE publication typeA1 Journal article-refereed


  • Emission control
  • Fuzzy adaptive feature
  • Hybrid optimization algorithms
  • Self-adaptive particle swarm optimization
  • Differential evolution
  • Optimal power flow
  • Pareto optimal method
  • Practical constraints

Fingerprint Dive into the research topics of 'A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems'. Together they form a unique fingerprint.

  • Cite this