A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans

Research output: Contribution to journalArticleScientificpeer-review

Details

Original languageEnglish
Article number74
Number of pages12
JournalBiotechnology for Biofuels
Volume11
Issue number1
Early online date22 Mar 2018
Publication statusPublished - Mar 2018
MoE publication typeA1 Journal article-refereed

Researchers

  • Fakhria M. Razeq
  • Edita Jurak
  • Peter J. Stogios
  • Ruoyu Yan
  • Maija Tenkanen
  • Mirjam A. Kabel
  • Weijun Wang
  • Emma Master

Research units

  • University of Toronto
  • University of Helsinki
  • Wageningen University & Research

Abstract

Background: Acetylated 4-O-(methyl)glucuronoxylan (GX) is the main hemicellulose in deciduous hardwood, and comprises a β-(1→4)-linked xylopyranosyl (Xylp) backbone substituted by both acetyl groups and α-(1→2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Whereas enzymes that target singly acetylated Xylp or doubly 2,3-O-acetyl-Xylp have been well characterized, those targeting (2-O-MeGlcpA)3-O-acetyl-Xylp structures in glucuronoxylan have remained elusive. Results: An unclassified carbohydrate esterase (FjoAcXE) was identified as a protein of unknown function from a polysaccharide utilization locus (PUL) otherwise comprising carbohydrate-active enzyme families known to target xylan. FjoAcXE was shown to efficiently release acetyl groups from internal (2-O-MeGlcpA)3-O-acetyl-Xylp structures, an activity that has been sought after but lacking in known carbohydrate esterases. FjoAcXE action boosted the activity of α-glucuronidases from families GH67 and GH115 by five and nine times, respectively. Moreover, FjoAcXE activity was not only restricted to GX, but also deacetylated (3-O-Araf)2-O-acetyl-Xylp of feruloylated xylooligomers, confirming the broad substrate range of this new carbohydrate esterase. Conclusion: This study reports the discovery and characterization of the novel carbohydrate esterase, FjoAcXE. In addition to cleaving singly acetylated Xylp, and doubly 2,3-O-acetyl-Xylp, FjoAcXE efficiently cleaves internal 3-O-acetyl-Xylp linkages in (2-O-MeGlcpA)3-O-acetyl-Xylp residues along with densely substituted and branched xylooligomers; activities that until now were missing from the arsenal of enzymes required for xylan conversion.

    Research areas

  • Acetyl xylan esterase, Glucuronic acid, Polysaccharide utilization loci, SGNH hydrolase, Xylan, α-Glucuronidase

Download statistics

No data available

ID: 18791760