A New Quadratic Matrix Inequality Approach to Robust Adaptive Beamforming for General-rank Signal Model

Y. Huang, Sergiy Vorobyov, Zhengqian Luo

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

2 Citations (Scopus)

Abstract

The worst-case robust adaptive beamforming problem for generalrank signal model is considered. This is a nonconvex problem, and an approximate version of it (by introducing a matrix decomposition on the presumed covariance matrix of the desired signal) has been studied in the literature. Herein the original robust adaptive beamforming problem is tackled. Resorting to the strong duality of a linear conic program, the robust beamforming problem is reformulated into a quadratic matrix inequality (QMI) problem. There is no general method for solving a QMI problem in the literature. Here- in, employing a linear matrix inequality (LMI) relaxation technique, the QMI problem is turned into a convex semidefinite programming problem. Due to the fact that there often is a positive gap between the QMI problem and its LMI relaxation, a deterministic approximate algorithm is proposed to solve the robust adaptive beamforming in the QMI form. Last but not the least, a sufficient optimality condition for the existence of an optimal solution for the QMI problem is derived. To validate our theoretical results, simulation examples are presented, which also demonstrate the improved performance of the new robust beamformer in terms of the output signal-to-interference- plus-noise ratio.
Original languageEnglish
Title of host publication44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019; Brighton; United Kingdom; 12-17 May 2019 : Proceedings
PublisherIEEE
Pages4335-4339
Number of pages5
ISBN (Electronic)978-1-4799-8131-1
ISBN (Print)978-1-4799-8132-8
DOIs
Publication statusPublished - 1 May 2019
MoE publication typeA4 Article in a conference publication
EventIEEE International Conference on Acoustics, Speech, and Signal Processing - Brighton, United Kingdom
Duration: 12 May 201917 May 2019
Conference number: 44

Publication series

NameProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (Print)1520-6149
ISSN (Electronic)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
Abbreviated titleICASSP
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/201917/05/2019

Keywords

  • Robust adaptive beamforming
  • general-rank signal model
  • quadratic matrix inequality problem
  • linear matrix inequality relaxation
  • deterministic approximate algorithm

Fingerprint

Dive into the research topics of 'A New Quadratic Matrix Inequality Approach to Robust Adaptive Beamforming for General-rank Signal Model'. Together they form a unique fingerprint.

Cite this