Abstract
This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincaré inequality for 1 < p< ∞ improves to a (p, p- ε) -Poincaré inequality for some ε> 0 under a balance condition on the measures. The corresponding result for a maximal Poincaré inequality is also considered. In this case the left-hand side in the Poincaré inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincaré inequalities is used to characterize the self-improvement of two-measure Poincaré inequalities. Examples are constructed to illustrate the role of the assumptions. Harmonic analysis and PDE techniques are used extensively in the arguments.
Original language | English |
---|---|
Pages (from-to) | 1763–1810 |
Journal | Journal of Geometric Analysis |
Volume | 29 |
Issue number | 2 |
Early online date | 2018 |
DOIs | |
Publication status | Published - Apr 2019 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Geodesic two-measure space
- Poincaré inequality
- Self-improvement