Abstract
We extend the notion of distributed decision in the framework of distributed network computing, inspired by both the polynomial hierarchy for Turing machines and recent results on so-called distributed graph automata. We show that, by using distributed decision mechanisms based on the interaction between a prover and a disprover, the size of the certificates distributed to the nodes for certifying a given network property can be drastically reduced. For instance, we prove that minimum spanning tree (MST) can be certified with O(logn)-bit certificates in n-node graphs, with just one interaction between the prover and the disprover, while it is known that certifying MST requires Ω(log2n)-bit certificates if only the prover can act. The improvement can even be exponential for some simple graph properties. For instance, it is known that certifying the existence of a nontrivial automorphism requires Ω(n2) bits if only the prover can act. We show that there is a protocol with two interactions between the prover and the disprover that certifies nontrivial automorphism with O(logn)-bit certificates. These results are achieved by defining and analyzing a local hierarchy of decision which generalizes the classical notions of proof-labeling schemes and locally checkable proofs.
Original language | English |
---|---|
Pages (from-to) | 51-67 |
Number of pages | 17 |
Journal | Theoretical Computer Science |
Volume | 856 |
Early online date | 2020 |
DOIs | |
Publication status | Published - 8 Feb 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Distributed decision
- Distributed hierarchy
- Distributed non-determinism
- Local certification
- Local model
- Proof-labeling scheme