Projects per year
Abstract
We explore the applicability of MATLAB for 3D computational fluid dynamics (CFD) of shear-driven indoor airflows. A new scale-resolving, large-eddy simulation (LES) solver titled DNSLABIB is proposed for MATLAB utilizing graphics processing units (GPUs). In DNSLABIB, the finite difference method is applied for the convection and diffusion terms while a Poisson equation solver based on the fast Fourier transform (FFT) is employed for the pressure. The immersed boundary method (IBM) for Cartesian grids is proposed to model solid walls and objects, doorways, and air ducts by binary masking of the solid/fluid domains. The solver is validated in two canonical reference cases and against experimental data. Then, we demonstrate the validity of DNSLABIB in a room geometry by comparing the results against another CFD software (OpenFOAM). Next, we demonstrate the solver performance in several isothermal indoor ventilation configurations and the implications of the results are discussed in the context of airborne transmission of COVID-19. The novel numerical findings using the new CFD solver are as follows. First, a linear scaling of DNSLABIB is demonstrated and a speed-up by a factor of 3-4 is also noted in comparison to similar OpenFOAM simulations. Second, ventilation in three different indoor geometries are studied at both low (0.1 m/s) and high (1 m/s) airflow rates corresponding to Re=5000 and Re=50000. An analysis of the indoor CO2 concentration is carried out as the room is emptied from stale, high CO2 content air. We estimate the air changes per hour (ACH) values for three different room geometries and show that the numerical estimates from 3D CFD simulations differ by 80%–150% (Re=50000) and 75%–140% (Re=5000) from the theoretical ACH value based on the perfect mixing assumption. Third, the analysis of the CO2 probability distributions (PDFs) indicates a relatively non-uniform distribution of fresh air indoors. Fourth, utilizing a time-dependent Wells-Riley analysis, an example is provided on the growth of the cumulative infection risk which is shown to reduce rapidly after the ventilation is started. The average infection risk is shown to reduce by a factor of 2 for lower ventilation rates (ACH=3.4-6.3) and 10 for the higher ventilation rates (ACH=37-64). Finally, we utilize the new solver to comment on respiratory particle transport indoors. A key contribution of the paper is to provide an efficient, GPU compatible CFD solver environment enabling scale-resolved simulations (LES/DNS) of airflow in large indoor geometries on a single GPU designed for high-performance computing. The demonstrated efficacy of MATLAB for GPU computing indicates a high potential of DNSLABIB for various future developments on airflow prediction.
Original language | English |
---|---|
Article number | 102265 |
Number of pages | 19 |
Journal | Journal of Computational Science |
Volume | 78 |
DOIs | |
Publication status | Published - Jun 2024 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Air changes per hour (ACH)
- Computational Fluid Dynamics (CFD)
- COVID-19/SARS-CoV-2
- Indoor ventilation
- Wells–Riley infection model
Fingerprint
Dive into the research topics of 'A GPU-accelerated computational fluid dynamics solver for assessing shear-driven indoor airflow and virus transmission by scale-resolved simulations'. Together they form a unique fingerprint.Projects
- 2 Finished
-
SA/COVID-19 Naukkarinen U10000
01/02/2020 → 31/12/2021
Project: Academy of Finland: Other research funding
-
SA/COVID-19 Vuorinen T21202
Vuorinen, V. (Principal investigator), Ersavas Isitman, G. (Project Member), Korhonen, M. (Project Member) & Laitinen, A. (Project Member)
01/02/2020 → 31/12/2021
Project: Academy of Finland: Other research funding