A comparative study of internal kink stability in EU DEMO designs with negative and positive triangularity

Lina Zhou*, Yueqiang Liu, Mattia Siccinio, Emiliano Fable, Tingting Wu, Taina Kurki-Suonio, Jari Varje, Deyong Liu

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Internal kink (IK) instability is investigated for European demonstration fusion reactor (EU DEMO) plasmas in both negative triangularity (NT) and positive triangularity (PT) configurations. For NT plasmas, the IK becomes more unstable as an ideal conformal wall moves away from the plasma boundary, with the mode growth rate saturating at the wall radial location of about, where a is the plasma minor radius and b the wall radial location. The plasma resistivity destabilizes the IK mode. The effect of sub-sonic toroidal plasma flow is sufficiently weak and can thus be ignored for these EU DEMO equilibria. These results are consistent with those for PT plasmas, albeit with larger mode growth rate in the NT configuration. Both perturbative and self-consistent magneto-hydrodynamic (MHD)-kinetic hybrid calculations predict (partial) stabilization of the IK modes in both NT and PT configurations, with inclusion of various kinetic contributions. Precessional drift motion of trapped fusion-born alphas in EU DEMO produces weak stabilization to the IK mode. Stronger stabilization occurs with the toroidal precession of trapped thermal particles (ions and electrons) and the bounce-transit motion of thermal ions. The stabilization is similar between the NT and PT configurations, due to the similarity of the mode eigenfunction (occupying a nearly circular region in the plasma core) despite the sign difference in the triangularity. The non-perturbative MHD-kinetic hybrid model predicts much less stabilization of the mode than the perturbative model, primarily due to the self-consistent determination of the mode eigenvalue in the former. Generally, no significant difference in the IK mode stability is found between the NT and PT plasmas in EU DEMO.

Original languageEnglish
Article number065007
Number of pages17
JournalPlasma Physics and Controlled Fusion
Volume63
Issue number6
DOIs
Publication statusPublished - Jun 2021
MoE publication typeA1 Journal article-refereed

Keywords

  • drift-kinetic effect
  • EU DEMO
  • internal kink instability
  • negative triangularity

Fingerprint

Dive into the research topics of 'A comparative study of internal kink stability in EU DEMO designs with negative and positive triangularity'. Together they form a unique fingerprint.

Cite this