Projects per year
Abstract
The 3-dimensional (3D) structure of the genome is of significant importance for many cellular processes. In this paper, we study the problem of reconstructing the 3D structure of chromosomes from Hi-C data of diploid organisms, which poses additional challenges compared to the better-studied haploid setting. With the help of techniques from algebraic geometry, we prove that a small amount of phased data is sufficient to ensure finite identifiability, both for noiseless and noisy data. In the light of these results, we propose a new 3D reconstruction method based on semidefinite programming, paired with numerical algebraic geometry and local optimization. The performance of this method is tested on several simulated datasets under different noise levels and with different amounts of phased data. We also apply it to a real dataset from mouse X chromosomes, and we are then able to recover previously known structural features.
Original language | English |
---|---|
Article number | 33 |
Pages (from-to) | 1-30 |
Number of pages | 30 |
Journal | Bulletin of Mathematical Biology |
Volume | 86 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2024 |
MoE publication type | A1 Journal article-refereed |
Keywords
- 13P25
- 14P05
- 3D genome organization
- 65H14
- 90C90
- 92-08
- 92E10
- Applied algebraic geometry
- Diploid organisms
- Hi-C
- Numerical algebraic geometry
Fingerprint
Dive into the research topics of '3D Genome Reconstruction from Partially Phased Hi-C Data'. Together they form a unique fingerprint.Projects
- 1 Finished
-
-: Algebraic geometry of hidden variable models in statistics
Kubjas, K. (Principal investigator), Ardiyansyah, M. (Project Member), Boege, T. (Project Member), Kuznetsova, O. (Project Member), Metsälampi, L. (Project Member), Lindy, E. (Project Member), Sodomaco, L. (Project Member) & Henriksson, O. (Project Member)
01/09/2019 → 31/08/2023
Project: Academy of Finland: Other research funding