20012017

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Education/Academic qualification

Doctor of Science (Technology), Information Technology

Master of Science (Technology), Engineering Physics

Keywords

  • Machine learning
  • Deep learning
  • Neural networks
  • Artificial intelligence
  • Data analysis

Fingerprint Dive into the research topics where Tapani Raiko is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 6 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

Semi-Supervised Domain Adaptation for Weakly Labeled Semantic Video Object Segmentation

Wang, H., Raiko, T., Lensu, L., Wang, T. & Karhunen, J., 2017, Computer Vision ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part I. Lai, S-H., Lepetit, V., Nishino, K. & Sato, Y. (eds.). p. 163-179 (Lecture Notes in Computer Science; vol. 10111).

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

  • 4 Citations (Scopus)

    DopeLearning: A computational approach to rap lyrics generation

    Malmi, E., Takala, P., Toivonen, H., Raiko, T. & Gionis, A., 13 Aug 2016, KDD 2016 - Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Vol. 13-17-August-2016. p. 195-204 10 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

    Open Access
  • 11 Citations (Scopus)

    How to Train Deep Variational Autoencoders and Probabilistic Ladder Networks

    Kaae Sønderby, C., Raiko, T., Maaløe, L., Kaae Sønderby, S. & Winther, O., 2016.

    Research output: Working paperProfessional

  • Ladder Variational Autoencoders

    Kaae Sønderby, C., Raiko, T., Maaløe, L., Kaae Sønderby, S. & Winther, O., 2016, Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, p. 3745-3753 9 p. (Advances in neural information processing systems; vol. 29).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

  • Scalable gradient-based tuning of continuous regularization hyperparameters

    Luketina, J., Berglund, M., Greff, K. & Raiko, T., 2016, 33rd International Conference on Machine Learning, ICML 2016. Vol. 6. p. 4333-4341 9 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

  • 2 Citations (Scopus)

    Projects

    Adaptiivisen informatiikan huippuyksikkö

    Raitio, J., Smit, P., Corona, F., Palomäki, K., Kurimo, M., Kaski, S., Lindh-Knuutila, T., Leppäaho, E., Raiko, T., Peltonen, J., Väyrynen, J. & Pöllä, M.

    01/01/201031/12/2011

    Project: Academy of Finland: Other research funding

    Activities

    Foreign Organisation

    Tapani Raiko (Visiting researcher)
    2 May 20164 May 2016

    Activity: Visiting an external institution typesVisit abroad

    Razvan Pascanu

    Tapani Raiko (Host)
    1 Jan 2015

    Activity: Hosting a visitor typesHosting a visitor

    Teknologia'15, Finland

    Tapani Raiko (Speaker)
    2015

    Activity: Talk or presentation typesPublic or invited talk

    KyungHyun Cho

    Tapani Raiko (Host)
    1 Jan 2015

    Activity: Hosting a visitor typesHosting a visitor

    Technical University of Denmark

    Tapani Raiko (Visiting researcher)
    2015

    Activity: Visiting an external institution typesVisit abroad

    Press / Media

    All hail: rap generator

    Pyry Takala, Tapani Raiko, Aristides Gionis & Eric Malmi

    08/11/2015

    1 item of Media coverage

    Press/Media: Media appearance