Nasib Ullah
20242025

Research activity per year

Personal profile

Artistic and research interests

Extreme Classification, Sparse Neural Networks, Multimodal Learning.

Fingerprint

Dive into the research topics where Nasib Ullah is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
  • Large Language Model as a Teacher for Zero-shot Tagging at Extreme Scales

    Zhang, J., Ullah, N. & Babbar, R., 2025, The 31st International Conference on Computational Linguistics (COLING 2025). Rambow, O., Wanner, L., Apidianaki, M., Al-Khalifa, H., Di Eugenio, B. & Schockaert, S. (eds.). Association for Computational Linguistics, p. 3465-3478 14 p. (International Conference on Computational Linguistics; vol. Part F206484-1).

    Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review

    Open Access
    File
    1 Downloads (Pure)
  • Navigating Extremes: Dynamic Sparsity in Large Output Spaces

    Ullah, N., Schultheis, E., Lasby, M., Ioannou, Y. & Babbar, R., 2025, Advances in Neural Information Processing Systems 37 (NeurIPS 2024). Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J. & Zhang, C. (eds.). Curran Associates Inc., 27 p. (Advances in Neural Information Processing Systems; vol. 37).

    Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review

    Open Access
  • Labels in Extremes: How Well Calibrated are Extreme Multi-label Classifiers?

    Ullah, N., Schultheis, E., Zhang, J. & Babbar, R., 17 Nov 2024, (Accepted/In press) KDD 2025 :Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 21 p.

    Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review