20132019

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Education/Academic qualification

Master of Science (Technology), Industrial Management, Aalto-yliopisto, Perustieteiden korkeakoulu

Bachelor of Science (Technology), Industrial Management

Fingerprint Dive into the research topics where Mathias Berglund is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 5 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

  • 7 Conference contribution
  • 3 Working paper
  • 1 Article
  • 1 Doctoral Thesis

Regularizing Trajectory Optimization with Denoising Autoencoders

Boney, R., Di Palo, N., Berglund, M., Ilin, A., Kannala, J., Rasmus, A. & Valpola, H., 2019, 33rd Conference on Neural Information Processing Systems: NeurIPS 2019 . Neural Information Processing Systems Foundation, (Advances in Neural Information Processing Systems).

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Open Access

Unsupervised Networks, Stochasticity and Optimization in Deep Learning

Berglund, M., 2017, Aalto University. 214 p.

Research output: ThesisDoctoral ThesisCollection of Articles

Open Access
  • Scalable gradient-based tuning of continuous regularization hyperparameters

    Luketina, J., Berglund, M., Greff, K. & Raiko, T., 2016, 33rd International Conference on Machine Learning, ICML 2016. Vol. 6. p. 4333-4341 9 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

  • 2 Citations (Scopus)

    Stochastic gradient estimate variance in contrastive divergence and persistent contrastive divergence

    Berglund, M., 1 Jan 2016, ESANN 2016 - 24th European Symposium on Artificial Neural Networks. p. 521-526 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

  • 1 Citation (Scopus)

    Bidirectional recurrent neural networks as generative models

    Berglund, M., Raiko, T., Honkala, M., Kärkkäinen, L., Vetek, A. & Karhunen, J., 2015, Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, Vol. 2015-January. p. 856-864 9 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

  • 29 Citations (Scopus)

    Press / Media