No photo of Diego Parente Paiva Mesquita

Diego Parente Paiva Mesquita

    20192023

    Research activity per year

    Personal profile

    Education/Academic qualification

    Tekn. toht., tietotekniikka

    Award Date: 16 Dec 2021

    Bacharel em Computacao, Republica Federativa do Brasil Ministerio da Educacao

    Award Date: 23 Aug 2016

    Fingerprint

    Dive into the research topics where Diego Parente Paiva Mesquita is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
    • 1 Similar Profiles

    Collaborations and top research areas from the last five years

    Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
    • Thin and deep Gaussian processes

      de Souza, D. A., Nikitin, A., John, T., Ross, M., Alvarez, M. A., Deisenroth, M. P., Pordeus Gomes, J. P., Parente Paiva Mesquita, D. & Mattos, C. L., 2023, (Accepted/In press) NeurIPS 2023.

      Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review

    • Bayesian Multilateration

      Sampaio de Carvalho Alencar, A., Mattos, C., Pordeus Gomes, J. P. & Mesquita, D., 2022, In: IEEE Signal Processing Letters. 29, p. 962-966

      Research output: Contribution to journalArticleScientificpeer-review

      1 Citation (Scopus)
    • Parallel MCMC Without Embarrassing Failures

      Augusto de Souza, D., Parente Paiva Mesquita, D., Kaski, S. & Acerbi, L., 2022, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics. JMLR, p. 1786-1804 (Proceedings of Machine Learning Research; vol. 151).

      Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review

      Open Access
      File
      32 Downloads (Pure)
    • Provably expressive temporal graph networks

      Souza, A. H., Mesquita, D., Kaski, S. & Garg, V., 2022, Advances in Neural Information Processing Systems 35 (NeurIPS 2022). Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K. & Oh, A. (eds.). Morgan Kaufmann Publishers, 13 p. (Advances in Neural Information Processing Systems; vol. 35).

      Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingsScientificpeer-review

      Open Access
    • Advances in distributed Bayesian inference and graph neural networks

      Mesquita, D., 2021, Aalto University. 127 p.

      Research output: ThesisDoctoral ThesisCollection of Articles

      Open Access