Cagatay Yildiz

  • Aalto SCI Computer Science Konemiehentie 2

20152019

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Education/Academic qualification

Master of Science (Technology), Information Technology

Fingerprint Dive into the research topics where Cagatay Yildiz is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 8 Similar Profiles

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

  • 6 Conference contribution

ODE2VAE: Deep generative second order ODEs with Bayesian neural networks

Yildiz, C., Heinonen, M. & Lähdesmäki, H., 2019, 33rd Conference on Neural Information Processing Systems: NeurIPS 2019 . Neural Information Processing Systems Foundation, (Advances in Neural Information Processing Systems).

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Open Access

A Nonparametric Spatio-temporal SDE Model

Yildiz, C., Heinonen, M. & Lähdesmäki, H., 2018, NIPS 2018 Spatiotemporal Workshop: 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada. Neural Information Processing Systems Foundation, p. 1-5

Research output: Chapter in Book/Report/Conference proceedingConference contributionProfessional

  • Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization

    Simsekli, U., Yildiz, C., Nguyen, T. H., Richard, G. & Cemgil, A. T., 2018, Proceedings of the 35th International Conference on Machine Learning. p. 4681-4690 (Proceedings of Machine Learning Research; vol. 80).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

    Open Access
    File
  • 2 Downloads (Pure)

    Asynchronous stochastic Quasi-Newton MCMC for non-convex optimization supplementary document

    Simsekli, U., Yildiz, C., Nguyen, T. H., Richard, G. & Cemgil, A. T., 1 Jan 2018, 35th International Conference on Machine Learning, ICML 2018. Krause, A. & Dy, J. (eds.). Vol. 11. p. 4674-4683 8 p. (Proceedings of Machine Learning Research; vol. 80).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

    Open Access
    File
  • 10 Downloads (Pure)

    Learning Stochastic Differential Equations With Gaussian Processes Without Gradient Matching

    Yildiz, C., Heinonen, M., Intosalmi, J., Mannerström, H. & Lähdesmäki, H., 2018, IEEE International Workshop on Machine Learning for Signal Processing. IEEE, 6 p. 8516991

    Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

  • 3 Citations (Scopus)

    Projects