Research output per year
Research output per year
Many technological applications depend crucially on surface rather than bulk material properties, and the study of surfaces has become an important field within condensed matter physics. A few prominent examples are immediately evident – the environmental degradation of high-Tc superconductors; bonding between grains of alumina in sintered ceramics; passivation of metal surfaces against corrosion; biomedical substrates; improving and designing new solid-state gas sensors for pollution monitoring and control; studying electrode/electrolyte interfaces in fuel cells. In microelectronics, the ability to produce and control almost atomically perfect silicon surfaces has allowed the interface engineering crucial in fabricating transistors at the nanoscale – and this control of surface properties remains a crucial element in the development of the next generation of microelectronic devices. More recently, increased confidence in manipulation and fabrication of atomic structures on surfaces has opened the field of nano or molecular electronics and magnetism, with great technological potential. In each of these cases, and in many other applications where surface properties are important, understanding and controlling surface and interface physics at the atomic scale is the fundamental developmental goal required for optimization and, in cases like nanoelectronics, realization.
In the SIN group we apply and develop various atomistic and quantum mechanical simulation methods to study surface and interface physics at the nanoscale, with particular emphasis on working closely with experimentalists and technologists. We have comprehensive experience in applying first principles methods for studying nanoscale systems, including both quantum chemical and density functional based approaches, and static and dynamical treatments of atoms and electrons. Our research topics include nanoscale studies of friction, nanomanipulation, nanocatalysis, microelectronics, molecular electronics, self-assembly, solid-liquid interfaces, and are often partnered with state-of-art Scanning Probe Microscopy. For more information on the group please follow the links in the menu.
Person: Visiting Scholar
Person: Professors, tenure track
Person: Doctoral students, Doctoral Student
Research output: Contribution to journal › Article › Scientific › peer-review
Research output: Contribution to journal › Article › Scientific › peer-review
Research output: Contribution to journal › Article › Scientific › peer-review
Krejci, O. (Creator), Zenodo, 6 May 2021
Dataset
Silveira Júnior, O. (Contributor), Krejci, O. (Creator) & Foster, A. (Supervisor), Zenodo, 21 May 2021
Dataset
Krejci, O. (Creator), Dimosthenous, S. (Contributor) & Foster, A. (Supervisor), Zenodo, 21 May 2021
Dataset
Foster, Adam (Recipient), 2009
Prize: Award or honor granted for academic or artistic career
Patrick Rinke (Organiser), Milica Todorovic (Member) & Adam Foster (Member)
Activity: Participating in or organising an event types › Organization of a workshop, panel, session, tutorial or event
Peter Liljeroth (Organiser) & Adam Foster (Organiser)
Activity: Participating in or organising an event types › Membership of an organizing committee or other positions of trust of a conference or a seminar
Adam Foster (Organiser)
Activity: Participating in or organising an event types › Membership of an organizing committee or other positions of trust of a conference or a seminar
Adam Foster, Matilda Backholm, Jouko Lahtinen, Ville Jokinen, Ekaterina Osmekhina, Robin Ras, Maria Sammalkorpi, Sakari Lepikko & Ygor Morais Jaques
24/10/2023
1 item of Media coverage
Press/Media: Media appearance
Adam Foster, Jouko Lahtinen, Peter Liljeroth, Markus Aapro, Somesh Chandra Ganguli, Sebastiaan van Dijken, Rhodri Mansell & Linghao Yan
08/06/2023
1 item of Media coverage
Press/Media: Media appearance
Adam Foster, Patrick Rinke & Filippo Federici Canova
30/03/2023
1 item of Media coverage
Press/Media: Media appearance